67 research outputs found

    Framework for Distributed Policy-Based Management in Wireless Sensor Networks to Support Autonomic Behavior

    Get PDF
    AbstractWireless sensor networks (WSN) usually work in a heterogeneous environment, which makes a sensor's node very difficult to detect, access and manage. Therefore, there is a need for autonomic behavior to overcome these environmental challenges. A general way of implementing autonomic behavior in distributed systems is through the use of policies. However the conventional policy frameworks are generally too heavy to execute in the sensor node. Thus the goal of our research is to create a framework for distributed policy-based management in WSNs. Our proposed framework is expected to extend the WSN management functionalities compared with conventional policy management system like Finger/Finger2; it also conceals the complexity of administrating policies operations from the users by streamline the processes; finally, it overcomes the flaw in the existing frameworks about policy execution orders in some cases where multi-policies are required to ensure consistency and persistence

    Evaluating Hamming Distance as a Metric for the Detection of CRC-based Side-channel Communications in MANETs

    Get PDF
    AbstractSide-channel communication is a form of traffic in which malicious parties communicate secretly over a wireless network. This is often established through the modification of Ethernet frame header fields, such as the Frame Check Sequence (FCS). The FCS is responsible for determining whether or not a frame has been corrupted in transmission, and contains a value calculated through the use of a predetermined polynomial. A malicious party may send messages that appear as nothing more than naturally corrupted noise on a network to those who are not the intended recipient. We use a metric known as Hamming distance in an attempt to differentiate purposely corrupted frames from naturally corrupted ones. In theory, it should be possible to recognize purposely corrupted frames based on how high this Hamming distance value is, as it signifies how many bits are different between the expected and the received FCS values. It is hypothesized that a range of threshold values based off of this metric exist, which may allow for the detection of side-channel communication across all scenarios. We ran an experiment with human subjects in a foot platoon formation and analyzed the data using a support vector machine. Our results show promise on the use of Hamming distance for side-channel detection in MANETs

    On the Transformative Growth of the UOIT Automotive Centre of Excellence (ACE) from Industry Research to Collaborative Industry/Academic Research and Experiential Learning

    Get PDF
    The Automotive Centre of Excellence (ACE) at the University of Ontario Institute of Technology is a research and development facility that offers chambers and technology for thermal management and aerodynamics including structural durability and life-cycle testing. Facilities include one of the largest and most sophisticated climatic wind tunnels (CWT) on the planet. ACE is a university-owned and operated research and development facility that commenced operations in 2011. Its original mandate was focused on the research and engineering development of automotive systems with an emphasis on Industry partnerships. Over the years ACE has diversified its market sectors and increased its community involvement and education. This paper will present examples of how ACE has interacted with the community and education sector to help transform the educational experience of not only students but the community at whole. It will discuss how revenue generation has been balanced to support educational and training needs. ACE also promotes research projects with the university and its impact and challenges in this area will be presented in the paper

    Challenges in the Implementation and Simulation for Wireless Side-Channel based on Intentionally Corrupted FCS

    Get PDF
    AbstractWe report on the challenges faced in the implementation and simulation of a side-channel communication based on frames with an intentionally corrupted Frame Check Sequence (FCS). Systematically corrupted FCSs can be used to enable covert communications between nodes that share the same algorithm for deciphering the FCS. In order to assess the possibility in detecting this side-channel communication it is necessary to have the ability to simulate it as well as to implement it on actual devices. Nearly all simulators drop corrupted frames before they reach their destination, making it impossible to simulate any side-channel communication based on intentionally corrupted FCS. We present an example of the modifications required to prevent this as applied to a well-known simulator called Sinalgo. We also discuss problems encountered when trying to intentionally corrupt the FCS on actual devices

    Excuse Me, Do I Know You From Somewhere? Unaware Facial Recognition Using Brain-Computer Interfaces

    Get PDF
    While a great deal of research has been done on \ the human brain’s reaction to seeing faces and \ reaction to recognition of these faces, the unaware \ recognition of faces is an area where further research \ can be conducted and contributed to. We performed a \ preliminary experiment where participants viewed \ images of faces of individuals while we recorded their \ EEG signals using a consumer-grade BCI headset. \ Pre-selection of the images used in each of the three \ phases in the experiment allowed us to tag each image \ based on what state of recognition we expect the image \ to take – No Recognition, a Possible Unaware \ Recognition, and a Possible Aware Recognition. We \ find, after filtering, artifact removal, and analysis of \ the participants’ EEG signals recorded from a \ consumer-grade BCI headset, obvious differences \ between the three classes of recognition (as defined \ above) and, more specifically, unaware recognitions, \ can be easily identified
    • 

    corecore